

Reg. No.: .....

Name: .....

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2024 (2019 to 2022 Admissions) CORE COURSE IN MATHEMATICS 5B08 MAT: Differential Equations and Laplace Transforms

Time: 3 Hours

Max. Marks: 48

## PART - A (Short Answer)

Answer any four questions from this Part. Each question carries 1 mark.  $(4 \times 1 = 4)$ 

- 1. Define an ordinary differential equation.
- 2. For what values of the constant m will  $y = e^{mx}$  be the solution of y'' 3y' 10y = 0.
- 3. Write the characteristic equation of  $3\frac{d^3y}{dy^3} + 2\frac{d^2y}{dy^3} = x^2$ .
- 4. Write the integrating factor of Mdx + Ndy = 0.
- 5. Find the inverse Laplace transform of  $\frac{1}{s^2 + 9}$ .

Answer any eight questions from this Part. Each question carries 2 marks. (8×2=16)

- 6. Solve  $y' + (x+2)y^2 = 0$ .
- 7. Find the order and degree of  $x^2 \frac{d^3y}{dx^3} + 12x \left(\frac{dy}{dx}\right)^{\frac{1}{2}} = 6$ .

## K24U 2753

8. Solve 
$$\frac{dy}{dx} = xy + x$$
.

- 9. Find the Wronskian of cosx and sinx.
- 10. State the uniqueness theorem of first order differential equation.
- 11. Find the basis of the solution of the equation  $\frac{d^2y}{dx^2} + y = 0$ .
- 12. Find the general solution of  $\frac{d^2y}{dx^2} 4y = 0$ .
- 13. Find the Wronskian of ex and ex.

14. Find 
$$L^{-1}\left[\frac{1}{(s+1)(s+2)}\right]$$
.

15. Find the convolution of t and e-t.

16. Evaluate 
$$L^{-1} \left[ \frac{2}{(s+4)^3} \right]$$
.

Answer any four question from this Part. Each question carries 4 marks. (4x4=16)

17. Solve 
$$2xyy' = y^2 - x^2$$
.

18. Find the orthogonal trajectories of the family  $x^2 - y^2 = c$ .

19. Solve 
$$\frac{d^2y}{dx^2} - 13\frac{dy}{dx} + 12y = e^{-2x}$$
.

20. Solve 
$$\frac{d^2y}{dx^2} + 25y = 2\sin 5x$$
.



21. Solve 
$$\frac{d^2y}{dx^2} - y = 3 + 2x^2$$
.

- 22. Find the Laplace transform of the integral  $\int_{0}^{t} te^{-4t} \sin 3t dt$ .
- 23. Find the Laplace transform of the function f(t) = t; if  $t \ge 2$  and 0, if t < 2.

-3-

Answer any two question from this Part. Each question carries 6 marks. (2×6=12)

24. Solve the initial value problem 
$$\left(y + \sqrt{x^2 + y^2}\right) dx - x dy = 0$$
,  $y(1) = 0$ .

25. Check the exactness and solve  $(2xy^2 + y)dx + (2y^3 - x)dy = 0$ .

26. Solve 
$$y'' - 3y' + 2y = 2x^2 + e^x + 2xe^x + 4e^{3x}$$
.

27. If L[f(t)] = F(s), then show that  $L[f(t-a) u(t-a)] = e^{-as}F(s)$ .